Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0294176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38150441

RESUMO

SARS-CoV-2 infection elicits robust CD8 T-cell responses, yet the identity of the mechanisms playing dominant roles in initiating the virus-specific CD8 T-cell responses are largely unknown. In the present study, we interrogate the contribution of the cDC1 subset to SARS-CoV-2-specific CD8 T-cell immunity. For this purpose, we used a novel murine line which combines the SARS-CoV-2 susceptible K18-hACE2 transgenic and the Batf3 deficient mice which lack the cDC1 subset. We demonstrate that in the absence of cDC1, viral-specific CD8 T-cell responses were severely impaired both in the draining lymph node as well as in the lungs, during the effector phase of SARS-CoV-2 infection. Furthermore, SARS-CoV-2 specific memory CD8 T-cells in the lungs and spleens were also significantly impacted, whereas humoral responses, as well as CD4 T-cells were not affected. Additionally, we demonstrate that the absence of cDC1 subset, and the consequent impaired CD8 T-cell responses, resulted in significant increase in SARS-CoV-2 viral load in the lungs. The conclusions of the study were further independently corroborated in an additional COVID-19 murine model consisting infection with a mouse-adapted SARS-CoV-2 virus. These results underscore a specific role for Batf3-dependent DC in regulating SARS-CoV-2 specific CD8 T-cell responses and may contribute to future vaccine design and immunization strategies.


Assuntos
COVID-19 , Animais , Camundongos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Dendríticas , SARS-CoV-2
2.
Curr Issues Mol Biol ; 45(10): 7944-7955, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37886945

RESUMO

Following viral infection, T-cells are crucial for an effective immune response to intracellular pathogens, including respiratory viruses. During the COVID-19 pandemic, diverse assays were required in pre-clinical trials to evaluate the immune response following vaccination against SARS-CoV-2 and assess the response following exposure to the virus. To assess the nature and potency of the cellular response to infection or vaccination, a reliable and specific activity assay was needed. A cellular activity assay based on the presentation of short peptides (epitopes) allows the identification of T cell epitopes displayed on different alleles of the MHC, shedding light on the strength of the immune response towards antigens and aiding in antigen design for vaccination. In this report, we describe two approaches for scanning T cell epitopes on the surface glycoprotein of the SARS-CoV-2 (spike), which is utilized for attachment and entry and serves as an antigen in many vaccine candidates. We demonstrate that epitope scanning is feasible using peptide libraries or computational scanning combined with a cellular activity assay. Our scans identified four CD8 T cell epitopes, including one novel undescribed epitope. These epitopes enabled us to establish a reliable T-cell response assay, which was examined and used in various experimental mouse models for SARS-CoV-2 infection and vaccination. These approaches could potentially aid in future antigen design for vaccination and establish cellular activity assays against uncharacterized antigens of emerging pathogens.

3.
Vaccines (Basel) ; 10(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35455362

RESUMO

Longevity of the immune response following viral exposure is an essential aspect of SARS-CoV-2 infection. Mild SARS-CoV-2 infection of K18-hACE2 mice was implemented for evaluating the mounting and longevity of a specific memory immune response. We show that the infection of K18-hACE2 mice induced robust humoral and cellular immunity (systemic and local), which persisted for at least six months. Virus-specific T cells and neutralizing antibody titers decreased over time, yet their levels were sufficient to provide sterile immunity against lethal rechallenge six months post-primary infection. The study substantiates the role of naturally induced immunity against SARS-CoV-2 infection for preventing recurring morbidity.

4.
Pathogens ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34451403

RESUMO

HLA transgenic mice are instrumental for evaluation of human-specific immune responses to viral infection. Mice do not develop COVID-19 upon infection with SARS-CoV-2 due to the strict tropism of the virus to the human ACE2 receptor. The aim of the current study was the implementation of an adenovirus-mediated infection protocol for human ACE2 expression in HLA transgenic mice. Transient pulmonary expression of the human ACE2 receptor in these mice results in their sensitisation to SARS-CoV-2 infection, consequently providing a valuable animal model for COVID-19. Infection results in a transient loss in body weight starting 3 days post-infection, reaching 20-30% loss of weight at day 7 and full recovery at days 11-13 post-infection. The evolution of the disease revealed high reproducibility and very low variability among individual mice. The method was implemented in two different strains of HLA immunized mice. Infected animals developed strong protective humoral and cellular immune responses specific to the viral spike-protein, strictly depending on the adenovirus-mediated human ACE2 expression. Convalescent animals were protected against a subsequent re-infection with SARS-CoV-2, demonstrating that the model may be applied for assessment of efficacy of anti-viral immune responses.

5.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33974566

RESUMO

Mice are normally unaffected by SARS coronavirus 2 (SARS-CoV-2) infection since the virus does not bind effectively to the murine version of the angiotensin-converting enzyme 2 (ACE2) receptor molecule. Here, we report that induced mild pulmonary morbidities rendered SARS-CoV-2-refractive CD-1 mice susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low doses of the acute lung injury stimulants bleomycin or ricin caused severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates greater than 50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart, and serum of low-dose ricin-pretreated mice compared with non-pretreated mice. Furthermore, lung extracts prepared 2-3 days after viral infection contained subgenomic mRNA and virus particles capable of replication only when derived from the pretreated mice. The deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against the SARS-CoV-2 receptor binding domain (RBD). Thus, viral cell entry in the sensitized mice seems to depend on viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. This unique mode of viral entry, observed over a mildly injured tissue background, may contribute to the exacerbation of coronavirus disease 2019 (COVID-19) pathologies in patients with preexisting morbidities.


Assuntos
Bleomicina/toxicidade , COVID-19/patologia , Lesão Pulmonar , Ricina/toxicidade , Animais , Chlorocebus aethiops , Comorbidade , Modelos Animais de Doenças , Feminino , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/virologia , Camundongos , Células Vero , Ligação Viral , Internalização do Vírus/efeitos dos fármacos
6.
Viruses ; 13(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810465

RESUMO

Monoclonal antibodies represent an important avenue for COVID-19 therapy and are routinely used for rapid and accessible diagnosis of SARS-CoV-2 infection. The recent emergence of SARS-CoV-2 genetic variants emphasized the need to enlarge the repertoire of antibodies that target diverse epitopes, the combination of which may improve immune-diagnostics, augment the efficiency of the immunotherapy and prevent selection of escape-mutants. Antigen-specific controlled immunization of experimental animals may elicit antibody repertoires that significantly differ from those generated in the context of the immune response mounted in the course of disease. Accordingly, rabbits were immunized by several recombinant antigens representing distinct domains of the viral spike protein and monoclonal antibodies were isolated from single cells obtained by cell sorting. Characterization of a panel of successfully isolated anti-receptor binding domain (RBD) and anti-N-terminal domain (NTD) antibodies demonstrated that they exhibit high specificity and affinity profiles. Anti-RBD antibodies revealing significant neutralizing potency against SARS-CoV-2 in vitro were found to target at least three distinct epitopes. Epitope mapping established that two of these antibodies recognized a novel epitope located on the surface of the RBD. We suggest that the antibodies isolated in this study are useful for designing SARS-CoV-2 diagnosis and therapy approaches.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Testes de Neutralização , Coelhos , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Vaccine ; 35(50): 7001-7009, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29102170

RESUMO

Francisella tularensis is the intracellular bacterial pathogen causing the respiratory life-threatening disease tularemia. Development of tularemia vaccines has been hampered by an incomplete understanding of the correlates of immunity. Moreover, the importance of lung cellular immunity in vaccine-mediated protection against tularemia is a controversial matter. Live attenuated vaccine strains of F. tularensis such as LVS (Live Vaccine Strain), elicit an immune response protecting mice against subsequent challenge with the virulent SchuS4 strain, yet the protective immunity against pulmonary challenge is limited in its efficacy and longevity. We established a murine intra-nasal immunization model which distinguishes between animals fully protected, challenged at 4 weeks post double-vaccination (200 inhalation Lethal Dose 50%, LD50, of SchuS4), and those which do not survive the lethal SchuS4 infection, challenged at 8 weeks post double vaccination. Early in the recall immune response in the lung (before day 3), disease progression and bacterial dissemination differed considerably between protected and non-protected immunized mice. Pre-challenge analysis, revealed that protected mice, exhibited significantly higher numbers of lung Ft-specific memory T cells compared to non-protected mice. Quantitative PCR analysis established that a higher magnitude, lung T cells response was activated in the lungs of the protected mice already at 24 h post-challenge. The data imply that an early memory response within the lung is strongly associated with protection against the lethal SchuS4 bacteria presumably by restricting the dissemination of the bacteria to internal organs. Thus, future prophylactic strategies to countermeasure F. tularensis infection may require modulation of the immune response within the lung.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Memória Imunológica , Pulmão/imunologia , Tularemia/prevenção & controle , Administração Intranasal , Animais , Vacinas Bacterianas/administração & dosagem , Feminino , Esquemas de Imunização , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Tularemia/imunologia
8.
Immunity ; 43(4): 776-87, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26384546

RESUMO

Emerging evidence suggests that immunological mechanisms underlie metabolic control of adipose tissue. Here, we have shown the regulatory impact of a rare subpopulation of dendritic cells, rich in perforin-containing granules (perf-DCs). Using bone marrow transplantation to generate animals selectively lacking perf-DCs, we found that these chimeras progressively gained weight and exhibited features of metabolic syndrome. This phenotype was associated with an altered repertoire of T cells residing in adipose tissue and could be completely prevented by T cell depletion in vivo. A similar impact of perf-DCs on inflammatory T cells was also found in a well-defined model of multiple sclerosis, experimental autoimmune encephlalomyelitis (EAE). Thus, perf-DCs probably represent a regulatory cell subpopulation critical for protection from metabolic syndrome and autoimmunity.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Síndrome Metabólica/imunologia , Proteínas Citotóxicas Formadoras de Poros/análise , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Transferência Adotiva , Animais , Antígenos de Diferenciação/análise , Antígeno CD11c/análise , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Células Clonais/imunologia , Grânulos Citoplasmáticos/química , Células Dendríticas/classificação , Células Dendríticas/ultraestrutura , Dieta Hiperlipídica/efeitos adversos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/patologia , Depleção Linfocítica , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/imunologia , Obesidade/patologia , Fenótipo , Proteínas Citotóxicas Formadoras de Poros/deficiência , Proteínas Citotóxicas Formadoras de Poros/genética , Quimera por Radiação , Tolerância a Antígenos Próprios/imunologia
9.
PLoS One ; 9(1): e85215, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24400128

RESUMO

Recently we described an unbiased bacterial whole-genome immunoinformatic analysis aimed at selection of potential CTL epitopes located in "hotspots" of predicted MHC-I binders. Applying this approach to the proteome of the facultative intra-cellular pathogen Francisella tularensis resulted in identification of 170 novel CTL epitopes, several of which were shown to elicit highly robust T cell responses. Here we demonstrate that by DNA immunization using a short DNA fragment expressing six of the most prominent identified CTL epitopes a potent and specific CD8+ T cell responses is being induced, to all encoded epitopes, a response not observed in control mice immunized with the DNA vector alone Moreover, this CTL-specific mediated immune response prevented disease development, allowed for a rapid clearance of the bacterial infection and provided complete protection against lethal challenge (10LD50) with F. tularensis holarctica Live Vaccine Strain (LVS) (a total to 30 of 30 immunized mice survived the challenge while all control DNA vector immunized mice succumbed). Furthermore, and in accordance with these results, CD8 deficient mice could not be protected from lethal challenge after immunization with the CTL-polyepitope. Vaccination with the DNA poly-epitope construct could even protect mice (8/10) against the more demanding pulmonary lethal challenge of LVS. Our approach provides a proof-of-principle for selecting and generating a multi-epitpoe CD8 T cell-stimulating vaccine against a model intracellular bacterium.


Assuntos
Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Francisella tularensis/imunologia , Tularemia/prevenção & controle , Vacinas Atenuadas/imunologia , Animais , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Feminino , Francisella tularensis/genética , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Tularemia/imunologia , Tularemia/mortalidade
10.
Semin Immunol ; 23(1): 58-64, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21292502

RESUMO

Inflammatory bowel diseases (IBDs) including Crohn's disease and ulcerative colitis represent a major challenge to clinicians and immunologists trying to understand why in certain individuals the peaceful coexistence of the commensal microflora and its host breaks down and results in chronic inflammation. Here we summarize the recent progress in our understanding of the organization of the intestinal mononuclear phagocytes with dendritic cells and macrophages of distinct phenotype, origin and function. Finally, we discuss potential strategies to translate the recent findings into the management of chronic inflammation in animal models of IBD.


Assuntos
Células Dendríticas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/terapia , Intestinos/citologia , Intestinos/imunologia , Macrófagos/imunologia , Animais , Humanos , Baço/imunologia
11.
Eur J Immunol ; 41(2): 291-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21267999

RESUMO

Classical DC (cDC) are required for efficient protective T-cell immunity. Moreover, recent data indicate that cDC also play a critical role in mediating homeostatic proliferation and maintenance of peripheral Treg. Here, we corroborate these findings by defining CD80/CD86 costimulation as an essential molecular component required for the cDC-Treg interactions. In contrast to earlier reports, the reduced Treg compartment of mice lacking cDC or selective CD80/86 expression on cDC, as such, did not render the respective animals prone to systemic lymphocyte hyperactivation or autoimmunity. Rather, we provide evidence that elevated immunoglobulin titers, as well as changes in T-cell subset prevalence and activation status are strictly associated with the nonmalignant myeloproliferative disorder triggered by the absence of cDC.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos/sangue , Autoimunidade/imunologia , Antígeno B7-1/genética , Antígeno B7-2/genética , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Contagem de Células , Quimera/imunologia , Células Dendríticas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transtornos Mieloproliferativos/etiologia , Transtornos Mieloproliferativos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(33): 14745-50, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679228

RESUMO

Lymphoid organs are characterized by a complex network of phenotypically distinct dendritic cells (DC) with potentially unique roles in pathogen recognition and immunostimulation. Classical DC (cDC) include two major subsets distinguished in the mouse by the expression of CD8alpha. Here we describe a subset of CD8alpha(+) DC in lymphoid organs of naïve mice characterized by expression of the CX(3)CR1 chemokine receptor. CX(3)CR1(+) CD8alpha(+) DC lack hallmarks of classical CD8alpha(+) DC, including IL-12 secretion, the capacity to cross-present antigen, and their developmental dependence on the transcriptional factor BatF3. Gene-expression profiling showed that CX(3)CR1(+) CD8alpha(+) DC resemble CD8alpha(-) cDC. The microarray analysis further revealed a unique plasmacytoid DC (PDC) gene signature of CX(3)CR1(+) CD8alpha(+) DC. A PDC relationship of the cells is supported further by the fact that they harbor characteristic D-J Ig gene rearrangements and that development of CX(3)CR1(+) CD8alpha(+) DC requires E2-2, the critical transcriptional regulator of PDC. Thus, CX(3)CR1(+) CD8alpha(+) DC represent a unique DC subset, related to but distinct from PDC. Collectively, the expression-profiling data of this study refine the resolution of previous DC definitions, sharpen the border of classical CD8alpha(+) and CD8alpha(-) DC, and should assist the identification of human counterparts of murine DC subsets.


Assuntos
Antígenos CD8/imunologia , Linhagem da Célula/imunologia , Células Dendríticas/imunologia , Receptores de Citocinas/imunologia , Receptores de HIV/imunologia , Animais , Apresentação de Antígeno/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Receptor 1 de Quimiocina CX3C , Linhagem da Célula/genética , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de HIV/genética , Receptores de HIV/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Immunol Rev ; 234(1): 76-89, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20193013

RESUMO

Recent years have seen a major advance in our understanding of the organization of the dendritic cell (DC) compartment. Particularly rewarding in this respect have been studies investigating DC origins, based on the identification of transcription factor and growth factor requirements, as well as direct demonstrations of precursor/progeny relationships by adoptive cell transfers. However, to fully understand the organization of the DC compartment, functional definitions of DC subsets must be provided and potential task divisions revealed that distinguish DC from other immune cells, including the closely related mononuclear phagocytes, such as macrophages. In fact, functional definitions might eventually replace the current distinction between DC and macrophages, which is in part based on arbitrary historic considerations, i.e. mononuclear phagocytes identified before the advent of DC in the mid 1970s generally termed macrophages. In this article, we review recent insight in the functions of classical DC in the mouse, focusing on our own work involving conditional and constitutive cell ablation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Células Dendríticas/transplante , Homeostase , Humanos , Tolerância Imunológica , Camundongos , Camundongos Transgênicos , Fenótipo , Linfócitos T/imunologia , Terminologia como Assunto , Timo/citologia , Timo/imunologia
14.
Methods Mol Biol ; 595: 429-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19941129

RESUMO

The study of dendritic cell involvement in complex phenomena that rely on multi-cellular interactions, such as immune homeostasis, stimulation, and tolerization, called for the investigation of dendritic cell functions within physiological context. To this end we have developed a conditional cell ablation strategy that is based on dendritic cell-restricted expression of a Diphtheria Toxin receptor (DTR) using the CD11c/Itgax promoter. Here, we provide basic protocols that describe the use of this prototypic dendritic cell ablation model and highlight pitfalls and strengths of the approach.


Assuntos
Antígeno CD11c/genética , Células Dendríticas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Animais , Antígeno CD11c/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Fagócitos/imunologia , Fagócitos/metabolismo
15.
Blood ; 113(4): 963-72, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18971423

RESUMO

CX(3)CR1 is a chemokine receptor with a single ligand, the membrane-tethered chemokine CX(3)CL1 (fractalkine). All blood monocytes express CX(3)CR1, but its levels differ between the main 2 subsets, with human CD16(+) and murine Gr1(low) monocytes being CX(3)CR1(hi). Here, we report that absence of either CX(3)CR1 or CX(3)CL1 results in a significant reduction of Gr1(low) blood monocyte levels under both steady-state and inflammatory conditions. Introduction of a Bcl2 transgene restored the wild-type phenotype, suggesting that the CX(3)C axis provides an essential survival signal. Supporting this notion, we show that CX(3)CL1 specifically rescues cultured human monocytes from induced cell death. Human CX(3)CR1 gene polymorphisms are risk factors for atherosclerosis and mice deficient for the CX(3)C receptor or ligand are relatively protected from atherosclerosis development. However, the mechanistic role of CX(3)CR1 in atherogenesis remains unclear. Here, we show that enforced survival of monocytes and plaque-resident phagocytes, including foam cells, restored atherogenesis in CX(3)CR1-deficent mice. The fact that CX(3)CL1-CX(3)CR1 interactions confer an essential survival signal, whose absence leads to increased death of monocytes and/or foam cells, might provide a mechanistic explanation for the role of the CX(3)C chemokine family in atherogenesis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Homeostase , Monócitos/citologia , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Aterosclerose/genética , Receptor 1 de Quimiocina CX3C , Sobrevivência Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética
16.
Immunity ; 29(6): 986-97, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19062318

RESUMO

Dendritic cells are critically involved in the promotion and regulation of T cell responses. Here, we report a mouse strain that lacks conventional CD11c(hi) dendritic cells (cDCs) because of constitutive cell-type specific expression of a suicide gene. As expected, cDC-less mice failed to mount effective T cell responses resulting in impaired viral clearance. In contrast, neither thymic negative selection nor T regulatory cell generation or T cell homeostasis were markedly affected. Unexpectedly, cDC-less mice developed a progressive myeloproliferative disorder characterized by prominent extramedullary hematopoiesis and increased serum amounts of the cytokine Flt3 ligand. Our data identify a critical role of cDCs in the control of steady-state hematopoiesis, revealing a feedback loop that links peripheral cDCs to myelogenesis through soluble growth factors, such as Flt3 ligand.


Assuntos
Células Dendríticas/imunologia , Proteínas de Membrana/imunologia , Transtornos Mieloproliferativos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proliferação de Células , Células Dendríticas/metabolismo , Homeostase/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Mieloproliferativos/metabolismo , Síndrome , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...